Fast release of ⁴⁵Ca²⁺ induced by inositol 1,4,5-trisphosphate and Ca²⁺ in the sarcoplasmic reticulum of rabbit skeletal muscle: evidence for two types of Ca²⁺ release channels

Carmen Valdivia, * Donna Vaughan, * Barry V. L. Potter, ‡ and Roberto Coronado * *Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706; and ‡School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

ABSTRACT The kinetics of Ca^{2+} release induced by the second messenger p-myoinositol 1,4,5 trisphosphate (IP₃), by the hydrolysis-resistant analogue p-myoinositol 1,4,5 trisphosphorothioate (IPS₃), and by micromolar Ca^{2+} were resolved on a millisecond time scale in the junctional sarcoplasmic reticulum (SR) of rabbit skeletal muscle. The total Ca^{2+} mobilized by IP₃ and IPS₃ varied with concentration and with time of exposure. Approximately 5% of the $^{45}Ca^{2+}$ passively loaded into the SR was released by 2 μ M IPS₃ in 150 ms, 10% was released by 10 μ M IPS₃ in 100 ms, and 20% was released by 50 μ M IPS₃ in 20 ms. Released $^{45}Ca^{2+}$ reached a limiting value of \sim 30% of the original load at a concentration of 10 μ M IP₃ or 25–50 μ M IPS₃. Ca^{2+} -induced Ca^{2+} release (CICR) was studied by elevating the extravesicular Ca^{2+} while maintaining a constant 5-mM intravesicular $^{45}Ca^{2+}$. An increase in extravesicular Ca^{2+} from 7 nM to 10 μ M resulted in a release of 55 \pm 7% of the passively loaded $^{45}Ca^{2+}$ in 150 ms. CICR was blocked by 5 mM Mg²⁺ or by 10 μ M ruthenium red, but was not blocked by heparin at concentrations as high as 2.5 mg/ml. In contrast, the release produced by IPS₃ was not affected by Mg²⁺ or ruthenium red but was totally inhibited by heparin at concentrations of 2.5 mg/ml or lower. The release produced by 10 μ M Ca^{2+} plus 25 μ M IPS₃ was similar to that produced by 10 μ M Ca^{2+} alone and suggested that IP₃-sensitive channels were present in SR vesicles also containing ruthenium red–sensitive Ca^{2+} release channels. The junctional SR of rabbit skeletal muscle may thus have two types of intracellular Ca^{2+} releasing channels displaying fast activation kinetics, namely, IP₃-sensitive and Ca^{2+} -sensitive channels.

INTRODUCTION

Receptor channels for the second messenger D-myoinositol 1,4,5 trisphosphate (IP₃) play a central role in the control of intracellular Ca2+ in neurons and secretory cells (Berridge and Gallione, 1988). However, their contribution to Ca²⁺ signals in muscle cells, particularly to the mechanism of excitation-contraction coupling in striated muscle, has remained elusive. The Ca2+ necessary to initiate muscle contraction is released from the sarcoplasmic reticulum (SR) in the muscle cell, essentially on the time scale of a single action potential lasting 10-200 ms. Several mechanisms by which the Ca²⁺ permeability of the SR could be increased in such a short time have been proposed (Schneider and Chandler, 1973; Endo, 1985; Fabiato, 1985), whereas others have been discarded (for review see Rios and Pizarro, 1991). Models involving protein-protein coupling between voltage sensors and Ca²⁺ release channels are particularly favored for skeletal muscle (Rios and Brum 1987; Tanabe et al., 1990), whereas Ca²⁺-induced Ca²⁺ release (CICR) is strongly supported in heart (Beuckelmann and Wier, 1988; Niggli and Lederer 1990). A third model favored for smooth muscle (Somlyo et al., 1988) involves the action of IP₃ as a chemical messenger, which, once released from the plasma membrane in response to a

Address correspondence to Dr. Coronado.

stimulus, would bind to an IP₃ receptor in the SR to evoke release of the stored Ca²⁺. This hypothesis has been extensively tested in skeletal muscle (Vergara et al., 1985; Volpe et al., 1985; Rojas et al., 1986; Donaldson et al., 1987; Valdivia et al., 1990) and cardiac muscle (Fabiato, 1986; Nosek et al., 1986; Kentish et al., 1990) but has been difficult to reproduce in all cases (Movsesian et al., 1985; Scherer and Ferguson, 1985; Lea et al., 1986; Mikos and Snow, 1987; Hanon et al., 1988).

In favor of a role of IP₃ in excitation-contraction coupling of skeletal muscle are (a) the localized production of IP₃ in the transverse tubules (Hidalgo et al., 1986); (b) the presence of an active IP₃-degrading system in the same membrane (Sanchez et al., 1991); (c) the demonstration that IP3 levels in skeletal muscle are actually increased by repetitive depolarization (Vergara et al., 1985, 1986; Lagos and Vergara, 1990); and (d) the recording of IP₃-sensitive channels in the SR of frog skeletal muscle (Suarez-Isla et al., 1988). However, against this mechanism are the observations that (a) heparin injected into frog muscle fibers, at concentrations that should presumably block the IP₃-sensitive release, did not block the excitation-contraction coupling (Pampe et al., 1988); and (b) the Ca²⁺ release in frog fibers activated by photolysis of caged IP3 was notoriously slow (Walker et al., 1987). The latter result questioned whether IP3 receptors could be kinetically

competent to elevate cytosolic Ca2+ on a time frame compatible with the fast processes of skeletal muscle cells. Since the kinetics of activation of SR Ca²⁺ release by IP₃ are critical to evaluate the role of this second messenger in excitation-contraction coupling, in the present work we resorted to rapid filtration (Dupont, 1984). This technique permitted a direct exposure of the SR membrane of rabbit skeletal muscle to various activators and blockers of Ca2+ release. The kinetics of release evoked by IP₃ and IPS₃ were compared with those produced by Ca²⁺ in the micromolar range (Ikemoto et al., 1985; Meissner et al., 1986; Sumbilla and Inesi, 1987; Calviello and Chiesi, 1989) because CICR appears to be mediated by ryanodine receptor Ca²⁺ release channels (Smith et al., 1985, 1986, 1988; Lai et al., 1988). The release induced by IP₃ or D-myoinositol 1,4,5 trisphosphorothioate (IPS₃) was as fast as that induced by Ca²⁺ and was completed in 40-200 ms, depending on concentration. The results suggest that, in addition to ryanodine receptors, the junctional SR contains a fast-activated IP₃-sensitive Ca²⁺ channel that may contribute to Ca2+ release from the SR of skeletal muscle under various physiological conditions. The presence of two separate channels was independently supported by recordings in planar bilayers (Valdivia et al., 1991).

MATERIALS AND METHODS

Isolation of rabbit skeletal muscle junctional SR

Rabbit back and leg muscle was dissected, quickly frozen in liquid N2, and stored at -80°C until use within six months. The procedure described by Meissner (1984) was implemented with the following modifications. Five portions of 50 g of thawed muscle were minced in a food processor and homogenized in a blender (Waring, New Hartford, CT) for 60 s in 250 ml of buffer A (0.3 M sucrose, 20 mM Hepes-Tris, pH 7.2). The following protease inhibitors were added to buffer A during homogenization: pepstatin A (1 µM), iodoacetamide (1 mM), PMSF (0.1 mM), leupeptin (1 μ M), and benzamidine (1 mM). The homogenate was centrifuged for 30 min at 4,000 rpm (2,600 g) in a GSA rotor (Sorvall-Dupont, Willmington, DE). The supernatant was centrifuged for 30 min at 8,000 rpm (10,400 g) in a GSA rotor and the pellet was resuspended in $0.6\,\mathrm{M}$ KCl, $5\,\mathrm{mM}$ Na-Pipes (piperazine-N,N'bis(2-ethanesulfonic acid)), pH 6.8. This material was incubated for 60 min at 0°C and centrifuged for 60 min in a rotor (Type 35, Beckman Instruments, Palo Alto, CA) at 32,000 rpm (80,000 g). The pellet was resuspended in 0.3 M sucrose, 0.4 M KCl, 5 mM Na-Pipes, pH 6.8. Samples were placed on top of a discontinuous sucrose gradient consisting of 9.5 ml each of 20, 30, and 40% (wt/wt) sucrose. Gradients were centrifuged in a rotor (SW 28, Beckman) for 16 h at 26,000 rpm (95,000 g). Heavy SR was recovered from the interphase between the 30 and 40% sucrose layers. Collected material was diluted three-fold with 0.4 M KCl, 5 mM Na-Pipes, pH 6.8, and centrifuged for 60 min at 32,000 rpm in a Type 35 rotor. The pellets were resuspended in 0.3 M sucrose, 0.1 M KCl, 5 mM Na-Pipes, pH 6.8, frozen in liquid N₂ in 1-ml aliquots at a protein concentration of 10 mg/ml, and stored at -80°C.

Passive loading of ⁴⁵Ca²⁺ into SR vesicles

Heavy SR stored frozen at -80°C was used in all experiments. To remove the sucrose used for storage, a thawed aliquot of SR was diluted in five volumes of 150 mM KCl, 50 mM Mes-Tris, pH 7.5, and kept on ice for 10 min. Membranes were pelleted by centrifugation for 10 min in a benchtop microfuge (Eppendorf-Brinkmann Instruments, Westbury, NY) at 12,000 rpm and resuspended at a protein concentration of 2.5 mg/ml in 150 mM KCl, 50 mM 2-(N-morpholino)ethanesulfonic acid (Mes)-Tris, pH 7.5. Loading of 45Ca2+ into SR vesicles was achieved passively in the presence of 5 mM ⁴⁵Ca²⁺. SR was incubated in 5 mM ⁴⁵CaCl₂ (~7,500 cpm/nmol), 150 mM KCl, 50 mM Mes-Tris, pH 7.5, at room temperature for 2 to 3 h. The total ⁴⁵Ca²⁺ loaded averaged 14.2 ± 3 nmol/mg protein (n = 22). Upper and lower values of 45Ca2+ passively loaded in this manner were 8 and 21 nmol/mg, respectively. Previously reported ⁴⁵Ca²⁺ loading capacity of rabbit skeletal muscle heavy SR varied between 30 (Kim et al., 1984; Calviello and Chiesi, 1989) and 100 nmol/mg protein (Miyamoto and Racker, 1984; Meissner et al., 1986). The lower values encountered in our preparation were explained by the fact that SR was isolated from muscle stored frozen in liquid N2 instead of fresh tissue. When the same procedure was used to isolate SR from fresh tissue, the passive loading capacity was 58 ± 11 nmol/mg protein (n = 7). Control experiments showed that both preparations released the same percentage of the loaded 45Ca2+. Percent releases in release medium and nonrelease medium described below were 51 ± 9 (n = 4) and 11 ± 8 (n = 6) in SR prepared from fresh tissue and 55 ± 7 (n = 4) and 9 ± 3 (n = 5) in SR prepared from frozen tissue. The difference in loading capacity was explained by a difference in the vesicular internal volume (McKinley and Meissner, 1978), which, in SR isolated from tissue stored frozen, was $2 \pm 0.8 \mu l/mg$ protein whereas, in the SR isolated from fresh tissue, was 9 \pm 2 $\mu l/mg$ protein. Hence, the SR vesicles prepared from frozen tissue had the same Ca²⁺-release properties as those prepared from fresh tissue but appeared to be smaller in size.

Measurements of ⁴⁵Ca²⁺ release by rapid filtration

The rapid filtration instrument consisted of a motor-driven syringe fitted to a holder for a 25-mm-diam filter (Biologic Instruments, Echirolles, France). SR loaded with ⁴⁵Ca²⁺ were placed on the surface of a standard nitrocellulose filter of 0.8 µm pore size (Millipore Corp., Danvers, MA), and the release medium containing the agonist was placed in the filtration syringe. Upon magnetic sealing of the holder and the syringe, the release medium in the syringe was forced through the filter for a specified time between 20 and 200 ms. A specified filtration time was executed by a microprocessor-controlled adjustment of the filtration volume at a constant filtration rate of 4 ml/s. Control filtrations showed that 10 ms was the upper limit for the time required to exchange the solution soaked into a filter. Before rapid filtration, the 5 mM ⁴⁵CaCl₂ used for passive loading was lowered to ~ 7 nM by dilution 20 µl of the ⁴⁵Ca²⁺-loaded SR (50 µg protein) into 1 ml of 5 mM MgCl₂, 1 mM EGTA, 150 mM KCl, 50 mM Mes-Tris, pH 7.5. The diluted SR was immediately spread on the surface of a wet filter (Millipore) held in the filtration holder by a mild vacuum and the rapid filtration was then executed. The filtration syringe was filled with one of two solutions designated nonrelease (5 mM MgCl₂, 1 mM EGTA, 150 mM KCl, 50 mM Mes-Tris, pH 7.5) or release medium (6.25 mM EGTA, 6.23 mM CaCl₂, 150 mM KCl, 50 mM Mes-Tris, pH 7.5) or with the indicated concentration of IP3, IPS3, ruthenium red, or heparin prepared in release or nonrelease medium. The chosen pH. 7.5, maximized Ca2+ release channel activity (Ma et al., 1988). The calculated free Ca2+ of the nonrelease medium was 0.2 nM (assuming

a contaminant CaCl₂ of 3.5 μ M) and that of the release medium was 10 μ M. Free Ca²⁺ was calculated by a computer program that used the stability constants of Fabiato (1988). A Ca²⁺ electrode (Orion Research Inc., Cambridge, MA) was used to verify the free Ca²⁺ of the release medium and to determine the contaminant free Ca²⁺ of solutions without added CaCl₂, MgCl₂, or EGTA, which was 1–3.5 μ M. After rapid filtration, filters were rinsed under a mild vacuum with 3 ml of 150 mM KCl, 50 mM Mes-Tris, pH 7.5, 6 mM MgCl₂, 10 μ M ruthenium red, and 20 μ M quercetin (rinse medium). Filters were counted for ⁴⁵Ca²⁺ content in 5 ml of scintillation fluid.

⁴⁵Ca²⁺ release controls and protocols

The following controls and protocols (1-6) ensured that the reported efflux of ⁴⁵Ca²⁺ represented a net transfer of Ca²⁺ across the SR membrane. (1) CICR was induced by a decrease, not an increase, in driving force for Ca2+ efflux. This was achieved by lowering the extravesicular free Ca2+ to 7 nM before the rapid filtration step. Consequently, the release induced by rapid filtration with 10 µM free Ca²⁺ occurred in spite of a net decrease in driving force for Ca²⁺ efflux out of the SR, from 5 mM lumenal Ca²⁺, 7 nM extravesicular Ca²⁺ to 5 mM lumenal Ca2+, 10 µM extravesicular Ca2+. (2) Efflux induced by release medium (6.25 mM EGTA, 6.23 mM CaCl₂, 150 mM KCl, 50 mM Mes-Tris, pH 7.5) was not mimicked by Na₂EGTA in the absence of added CA²⁺ (6.25 mM EGTA, 150 mM KCl, 50 mM Mes-Tris, pH 7.5) or by micromolar Ca²⁺ in the presence of millimolar MgCl₂ (6.25 mM EGTA, 6.23 mM CaCl₂; 10 mM MgCl₂, 150 mM KCl, 50 mM Mes-Tris, pH 7.5). Thus, it was unlikely that the released 45Ca²⁺ represented chelation by free EGTA of 45Ca2+ bound to the SR surface. If the release actually represented removal of ⁴⁵Ca²⁺ electrostatically bound to the SR surface, Mg2+ should have increased this "removal" because of the collapse of the SR negative surface potential produced by the millimolar concentration of this divalent. (3) The nonreleasable 45Ca2+ pool was evaluated in each experiment by a 50-fold dilution of ⁴⁵Ca²⁺-loaded SR into nonrelease medium containing 10 μ M Ca²⁺ ionophore A23187. The nonreleasable pool was $\leq 7\%$ of the total ${}^{45}\text{Ca}^{2+}$ present at t = 0. (4) Background ${}^{45}\text{Ca}^{2+}$ was evaluated in each experiment and was subtracted from each filtration time. To measure 45Ca2+ background, a duplicate sample of 45Ca2+loaded SR was diluted 50-fold into nonrelease medium containing 10 μM Ca²⁺ ionophore A23187 and incubated at room temperature for 10 min. Samples were afterward subjected to rapid filtration in nonrelease medium for 200 ms and rinsed in 3 ml of the rinse medium described above. Thus, the background radioactivity subtracted from each data point comprised the nonreleasable 45Ca2+ evaluated with A23187 and the nonspecific binding to filters. Background ⁴⁵Ca²⁺ was ≤1 nmol ⁴⁵Ca²⁺/filter per mg protein. (5) The total ⁴⁵Ca²⁺ present at t = 0 was evaluated in each experiment and was defined as the background-subtracted ⁴⁵Ca²⁺ that remained in the SR after a nominal 2-ms rapid filtration in nonrelease medium. (6) All filtrations were made in duplicate and averaged. Reported standard deviations were calculated from three or more filtrations from separate experiments. ⁴⁵Ca²⁺ efflux curves in release and nonrelease media were routinely included in parallel with each experiment as controls.

Chemicals and abbreviations

Na₂ATP was purchased from Sigma Chemical Co. (St. Louis, MO). Heparin prepared from porcine intestinal mucosa was purchased from ICN Biochemicals (Cleveland, OH). Ruthenium red (ruthenium III chloride oxide) was purchased from Alpha Products (Andover, MA). Sucrose, salts, and buffers were reagent grade. D-IP₃ and D-IPS₃ were synthesized as described (Cooke et al., 1987) and purified by ion-exchange chromatography on DEAE Sephadex A-25.

RESULTS

Kinetics of ⁴⁵Ca²⁺ release induced by IP₃, IPS₃, and Ca²⁺ in junctional SR

The kinetics of SR Ca2+ release were resolved by rapid filtration since this technique permitted a fast calibrated replacement of the extravesicular solution (Dupont, 1984). To eliminate the contribution of the Ca²⁺ pump to the release kinetics, all measurements were performed in passively loaded SR in solutions devoid of MgATP. We studied the release induced by IP₃ or IPS₃ side by side with CICR mainly since the latter represents a major efflux pathway for Ca²⁺ from the junctional SR and has been described extensively (Miyamoto and Racker, 1982; Ikemoto et al., 1985; Meissner et al., 1986; Sumbilla and Inesi, 1987; Calviello and Chiesi, 1989). The kinetics of ⁴⁵Ca²⁺ release produced by 25 μM IP₃ or 25 μ M IPS₃ are shown in Fig. 1. At t = 150 ms, the ⁴⁵Ca²⁺ released by IP3 and separately by IPS3 was equivalent to $30 \pm 8\%$ (n = 3) and $33 \pm 7\%$ (n = 3) of the $^{45}\text{Ca}^{2+}$ loaded at t = 0, respectively. The $t_{1/2}$ s established between t = 0 and t = 150 ms were 18 ± 8 and 20 ± 2 ms, and the initial rates averaged 118 and 117 nmol Ca²⁺/ mg⁻¹ s⁻¹, respectively. These data established that at a concentration of 25 µM, the kinetics of efflux induced by IP₃ and IPS₃ were much faster than that described previously in nonmuscle cells (Meyer et al., 1988; Parker and Ivorra, 1990; Finch et al., 1991). The total 45Ca²⁺ mobilized in these experiments agreed well with those described in actively loaded SR (Valdivia et al., 1990),

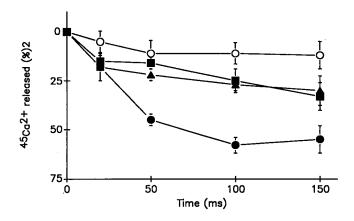


FIGURE 1 Time course of $^{45}\text{Ca}^{2+}$ release induced by 10 μ M free Ca $^{2+}$ and 25 μ M IP₃ or IPS₃. Filtrations were carried out in nonrelease medium (5 mM MgCl₂, 1 mM EGTA, 150 mM KCl, 50 mM Mes-Tris, pH 7.5; open circles); release medium (6.25 mM EGTA, 6.23 mM CaCl₂, 150 mM KCl, 50 mM Mes-Tris, pH 7.5; filled circles); nonrelease medium plus 25 μ M IP₃ (filled triangles); or nonrelease medium plus 25 μ M IPS₃ (filled squares). Mean \pm SD of release at t=150 ms are given in Table 1.

indicating that all the Ca2+ was mobilized from compartments that contained functional Ca2+ pumps. However, the rate of release in passively loaded SR was higher than that measured in actively loaded SR (not shown), which may be due to a larger Ca2+ gradient generated across the SR in the passive loading protocol. Because fast release was actually seen in the passive loading experiments, we concluded that IP3 and the analogue increased the ⁴⁵Ca²⁺ efflux rate directly by increasing the SR Ca²⁺ permeability. Fig. 1 also shows that the CICR measured in the same SR preparation was equally fast. In release medium, the total ⁴⁵Ca²⁺ mobilized averaged $55 \pm 7\%$ and the $t_{1/2}$ was 31 ± 9 ms (n = 4), whereas in nonrelease medium, the total ⁴⁵Ca²⁺ mobilized averaged $9 \pm 3\%$. Since the total $^{45}\text{Ca}^{2+}$ mobilized in nonrelease medium was small, the $t_{1/2}$ could not be measured accurately. On the basis of the data obtained between t = 0 and t = 50 ms, the initial rate of release induced by Ca^{2+} was ~ 126 nmol Ca^{2+}/mg^{-1} s⁻¹. Hence, the Ca^{2+} mobilized by CICR measured here at optimal Ca2+ (Ikemoto et al., 1985; Meissner et al., 1986; Calviello and Chiesi, 1989) was higher than that mobilized by a saturating concentration of IP₃ (see Fig. 4), although the initial rates of release were similar.

A study of the concentration dependence of release induced by IPS₃ is presented in Fig. 2. In each curve, the loss of ⁴⁵Ca²⁺ measured in nonrelease medium in the absence of IPS₃ was subtracted from the release produced by IPS₃. In some but not all experiments, a

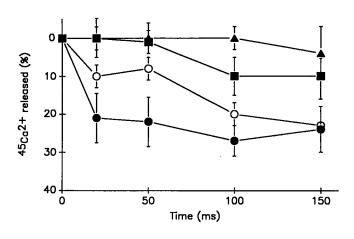


FIGURE 2 Concentration dependence of the rate of IPS₃-induced release. Time course of release was obtained in passively loaded SR. Measurements were carried out in nonrelease media containing 2 (triangles), 10 (squares), 25 (open circles), and 50 μ M (filled circles) IPS₃. Each time point was measured in two to five separate experiments made in duplicate. The ⁴⁵Ca²⁺ released in the absence of IPS₃ was subtracted from each point. Release at t = 150 ms averaged $10 \pm 4\%$ in nonrelease media without IPS₃. Releases at 150 ms after subtraction were $4 \pm 6\%$ (triangles), $10 \pm 7\%$ (squares), $23 \pm 7\%$ (open circles), and 25% (filled circles).

concentration of 2 µM IPS₃ was sufficient to produce a small release, which occurred with a delay of ~ 100 ms. At higher concentrations, however, release could be observed at earlier times. At 10 µM IPS₃, a release of $10 \pm 7\%$ of the passively loaded ⁴⁵Ca²⁺ occurred with an average $t_{1/2}$ in the range of 70–100 ms. At 25 μ M IPS₃, a release of $33 \pm 6\%$ of the original load occurred with an average $t_{1/2}$ of 20 to 50 ms, whereas at 50 μ M, the $t_{1/2}$ was below 20 ms and the extent of release was $34 \pm 6\%$. Thus the rate and the extent of the release varied with agonist concentration. Fig. 3 shows that the total 45Ca²⁺ released at t = 100 ms (circles) or t = 150 ms (squares) reached a limit at ~30% of the passively loaded 45Ca²⁺ at an IPS₃ concentration of 25 to 50 µM. When similar experiments were made using IP₃ (Fig. 4), there was a clear saturation of the releasable pool at a concentration of 10 µM IP₃. These results indicate that IP₃ has a higher affinity than IPS₃ for its receptor site, an observation in agreement with measurements in nonmuscle cells (Strupish et al., 1988). The saturation of the releasable pool at ~35% of the 45 Ca²⁺ loaded at t = 0 strongly suggests that only a fraction of the SR vesicles have the IP₃sensitive release pathway. In addition, the putative IP₃-sensitive channel is unlikely to be the ryanodine receptor because millimolar Mg2+ was present in all of the solutions of these experiments.

Selective block of CICR or IP₃-sensitive release in junctional SR

To establish whether the release induced by IP₃ occurred by activation of ryanodine receptors, we investi-



FIGURE 3 Saturation of the ⁴⁵Ca²⁺ mobilized by IPS₃. All filtrations were carried out in nonrelease medium containing the indicated micromolar concentration of IPS₃. Each time point ± SD corresponds to three to five separate experiments in duplicate. The highest IPS₃ concentration corresponds to a single experiment in duplicate. The total ⁴⁵Ca²⁺ released was measured at a fixed time at 100 (circles) or 150 ms (squares).

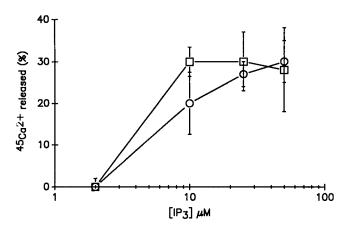


FIGURE 4 Saturation of the 45 Ca²⁺ mobilized by IP₃. All filtrations were carried out in nonrelease medium containing the indicated micromolar concentration of IP₃. Each mean \pm SD corresponds to three separate experiments in duplicate. The total 45 Ca²⁺ released was measured at a fixed time of 100 (circles) or 150 ms (squares).

gated the effect of ruthenium red, which is a blocker of the Ca²⁺ release channel formed by the ryanodine receptor (Miyamoto and Racker, 1982; Smith et al., 1985, 1986, 1988; Meissner et al., 1986). We also studied the effect of heparin because this glycosaminoglycan inhibits IP3-sensitive channels in a selective manner (Ehrlich and Watras, 1988). For these experiments we selected a concentration of 10 µM ruthenium red and 2.5 mg/ml heparin, since Ehrlich and Watras (1988) reported that up to 1 mg/ml heparin had no effect on the skeletal ryanodine receptor, whereas in the same study, 10 µM ruthenium red could block skeletal ryanodine receptors without affecting IP3-sensitive channels in aortic SR. Fig. 5 shows the effect of both agents on the CICR measured in release medium. In control experiments (circles), the released 45 Ca²⁺ was $55 \pm 7\%$ and the $t_{1/2}$ was 31 \pm 9 ms. Addition of heparin to the release medium did not produce a significant change in the total $^{45}\text{Ca}^{2+}$ mobilized at $t = 150 \text{ ms} (68 \pm 8\%)$ or in the $t_{1/2}$ $(39 \pm 5 \text{ ms})$. In contrast, a release medium containing 10 µM ruthenium red blocked release almost as effectively as the Mg²⁺-containing nonrelease medium described earlier. Thus, the CICR established by changing the solution free Ca2+ was readily blocked by ruthenium red but was totally insensitive to 2.5 mg/ml heparin. The effects of 2.5 mg/ml heparin and 10 µM ruthenium red on the release activated by 25 µM IPS₃ in nonrelease medium are shown in Fig. 6. In control experiments (circles), IPS₃ mobilized 33 \pm 7% of the loaded ⁴⁵Ca²⁺ and the $t_{1/2}$ was 20 \pm 2 ms. Heparin tested in nonrelease medium plus 25 µM IPS₃ inhibited release as effectively as nonrelease medium without IPS₃ (5 \pm 4%). On the other hand, 10 µM ruthenium red did not modify the

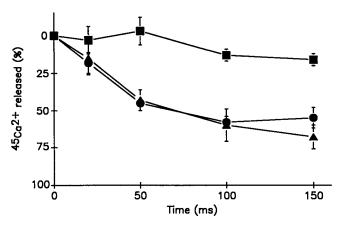


FIGURE 5 Effect of heparin and ruthenium red on CICR. Filtrations were carried out in passively loaded SR in release medium (circles), release medium plus 10 µM ruthenium red (squares), or release medium plus 2.5 mg/ml heparin (triangles).

release initiated by 25 μ M IPS₃ in nonrelease medium, which at t=150 ms was 31 \pm 6%. These results clearly show that the chosen concentrations of heparin and ruthenium red were effective in separating the IP₃-sensitive and Ca²⁺-sensitive release of Ca²⁺ in junctional SR. This rules out the possibility that the IP₃-induced release may have occurred by activation of ryanodine receptor Ca²⁺ release channels.

Colocalization of IP₃ and ryanodine receptors in junctional SR

Because two distinct release pathways were present in the preparation of junctional SR, we investigated whether

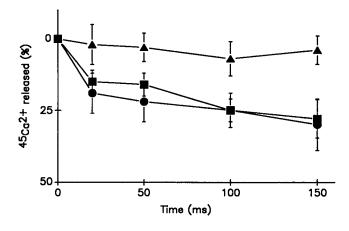


FIGURE 6 Effect of heparin and ruthenium red on the release induced by IPS₃. Filtrations were carried out in passively loaded SR in nonrelease medium plus 25 µM IPS₃ (circles), nonrelease medium plus 25 µM IPS₃ and 10 µM ruthenium red (squares), and nonrelease medium plus 25 µM IPS₃ and 2.5 mg/ml heparin (triangles).

1188 Biophysical Journal Volume 61 May 1992

Ca²⁺ and IPS₃ acted on the same or separate pools of stored Ca²⁺. This was achieved by comparing the release evoked via CICR and IPS₃ to that produced when both triggering agents were combined. Fig. 7 shows averages of three experiments in which 45Ca2+ was mobilized by 10 μM Ca²⁺-containing release medium or by release medium plus 25 µM IPS₃. Nonrelease medium plus 2.5 mg/ml heparin served as control for both agonists. The Ca^{2+} mobilized at t = 150 ms via CICR (55 ± 7%) was not significantly different from that mobilized by CICR and IPS₃ combined (52 \pm 11%). This result indicates that, after activation of CICR, the Ca²⁺ pool mobilized by IP₃ may have been depleted. Alternatively, it could be argued that micromolar Ca2+ inhibits the IPS3-sensitive release so that, in the presence of both agents, only CICR is activated. However, micromolar Ca²⁺ has been shown to potentiate rather than to inhibit the action of IP₃ (Finch et al., 1991). Thus, the most direct interpretation of this observation is that both pathways are activated but the IP3-sensitive channels are present in junctional SR vesicles that in addition contain Ca2+sensitive channels. This conclusion is also supported by the kinetic parameters of the release of 45Ca²⁺ summarized in Table 1. Although the presence of IPS₃ in the release medium did not increase the total Ca2+ mobilized, the activation of the IP3-sensitive pathway in the presence of CICR resulted in faster kinetics of release. Thus, when the two triggering agents were combined, the initial release rate increased almost two-fold. This would be expected if the two release channels are present in the same SR membrane, because activation of two pathways in parallel would increase the rate but not the extent of release.

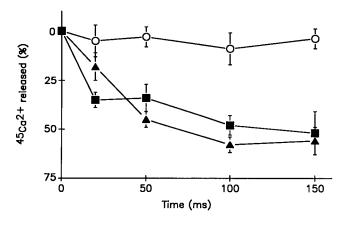


FIGURE 7 Combined release induced by Ca^{2+} and IPS₃. Filtrations were carried out in passively loaded SR in release medium (*triangles*), release medium plus 25 μ M IPS₃ (*squares*), and nonrelease medium plus 2.5 mg/ml heparin (*circles*).

TABLE 1 Kinetic parameters of $^{45}C^{2+}$ release induced by IP₃, IPS₃, and Ca²⁺ in rabbit skeletal muscle heavy SR

Filtration solution	Release rate	$t_{1/2}, at$ $t = 150 \text{ ms}$	%Release	n
	nmol mg ⁻¹ s ⁻¹			
NRM		_	9 ± 3	5
$NRM + 25 \mu M IP_3$	118 ± 36	18 ± 8	30 ± 8	3
$NRM + 25 \mu M IPS_3$	117 ± 11	20 ± 2	33 ± 7	3
NRM + 25 µM IPS ₃				
+ 10 μM RR	129 ± 29	17 ± 5	31 ± 6	3
$NRM + 25 \mu M IPS_3$				
+ 2.5 mg/ml heparin	_	_	5 ± 4	4
RM	126 ± 28	31 ± 9	55 ± 7	4
$RM + 25 \mu M IPS_3$	205 ± 44	18 ± 5	52 ± 11	3
$RM + 10 \mu M RR$	_	_	14 ± 4	3
RM + 2.5 mg/ml				
heparin	124 ± 14	39 ± 5	68 ± 8	3

Initial release rate (\pm SD) was calculated as [(nmol $^{45}\text{Ca}^{2+}$ mg $^{-1}$ loaded at t=0) – (nmol $^{45}\text{Ca}^{2+}$ mg $^{-1}$ at $t=t_{1/2}$)] × [$t_{1/2}$] $^{-1}$, which assumed a constant efflux rate between t=0 and $t=t_{1/2}$. The $t_{1/2}$ (\pm SD) corresponds to the 50% efflux time between t=0 and t=150 ms. The %release corresponds to (filter cpm at time t)/(filter cpm at time t=0) × 100. The average $^{45}\text{Ca}^{2+}$ loaded at t=0 was 14.2 \pm 3 nmol mg $^{-1}$ SR protein (n=22). n=1 corresponds to a data set consisting of a single filtration with a duplicate at each of the following times: t=0, 20, 50, 100, and 150 ms. NRM, nonrelease medium; RM, release medium; RR, ruthenium red.

DISCUSSION

Comparison of the cellular rate of Ca²⁺ release and the SR efflux rate induced by IP₃

Because the kinetics of release produced by IP₃ were fast and obviously within the time frame of Ca2+ release observed in situ (Vergara and Delay, 1986), we were interested in estimating whether the initial Ca²⁺ release rate induced by IP3 were comparable to rates measured in skeletal muscle fibers by Ca2+ indicators during excitation-contraction coupling. For large depolarizations, the release rate in frog fibers measured by the Ca²⁺ indicator antipyrylazo III corresponds to a change of free Ca²⁺ concentration of ~1 to 10 μM/ms (Rios and Brum, 1987; Simon et al., 1989). A typical volume of fiber monitored optically in these experiments is a section of 250-µm length and two thirds of fiber width, which for an average fiber with a diameter of 100 µm translates into ~1.7 nl. Thus, the total Ca²⁺ change over the monitored area is ~ 1.7 to 17 pmol s⁻¹. Assuming a muscle tissue density of 1.06 g/ml (Mendez and Keys, 1960), an SR content of 5 mg/g muscle (Meissner et al., 1973), and a terminal cisternae or junctional SR content of one third of the total SR (Mobley and Eisenberg, 1975), we estimated the rate of release at ~ 550 to 5.500

nmol Ca²⁺ mg⁻¹ s⁻¹. However, this rate may be underestimated by a factor of 10 due to uncertainties in whether the dye concentration used to report cytosolic Ca2+ is exclusively the free dye or a mixture of free and cell-bound dye (Maylie et al., 1987). Thus, the rate of release measured in situ, with the assumptions of the calculation and the uncertainty in the estimation of the concentration of dye, lies within the range of 550-5,500 nmol Ca²⁺ mg⁻¹ s⁻¹. Initial release rates calculated in the various solutions employed in this study are shown in Table 1. In particular, the release rates produced by 25 μ M IP₃ or IPS₃ (~ 120 nmol Ca²⁺ mg⁻¹ s⁻¹) or by IP₃ and Ca^{2+} combined (~200 nmol Ca^{2+} mg⁻¹ s⁻¹) are close to the lower limits of the cellular measurement. The contribution of CICR to the release rate within cells will be limited by the local concentration of free Mg²⁺, which is known to block this release mechanism (Endo, 1985), and in the present experiments was kept purposely low. However, because the IP₃-sensitive release was measured in the 5 mM MgCl₂-containing nonrelease medium, the IP3-induced release within cells is expected to be largely insensitive to Mg²⁺. The calculation thus shows that the opening of IP₃-sensitive channels, even at physiological levels of Mg²⁺, (Maughan and Godt, 1989) could account for, or contribute to, the massive movement of Ca²⁺ required to initiate muscle contraction. It should be noticed, however, that the experimental milieu used here is simpler than that of muscle cells (Maughan and Godt, 1989); therefore, cellular ions not yet tested in our system could influence the rate of release in a positive or negative manner.

By rapidly quenched flow in actively loaded SR, Ikemoto et al. (1985) were able to induce a release of $^{45}\text{Ca}^{2+}$ with a $t_{1/2}$ in the range of 50–70 ms in a medium containing 4 µM free Ca²⁺ plus caffeine. Meissner et al. (1986) used the same technique in passively loaded SR to show that a medium containing adenine nucleotides produced a massive release of stored Ca2+ that was essentially "instantaneous" with a $t_{1/2}$ of ~10 ms. In previous studies of rapid filtration (Sumbilla and Inesi, 1987; Calviello and Chiesi, 1989), release of ⁴⁵Ca²⁺ in <100 ms could be induced by 5 µM free Ca²⁺ in the absence of other agents or in solutions that combined micromolar Ca2+ and millimolar levels of total Mg2+ and ATP. The total released ${}^{45}\text{Ca}^{2+}$ and the $t_{1/2}$ of the efflux measured by Sumbilla and Inesi (1987) in micromolar free Ca²⁺ without other ligands was similar to that reported here. In contrast, the release rates induced by IP₃ reported previously in non-muscle cells were remarkably slow, on the time scale of several seconds. In permeabilized rat basophilic leukemia cells (Meyer et al., 1988), the efflux rate saturated with IP₃ concentrations > 50 nM at a value of $\sim 0.3 \text{ s}^{-1}$, which would correspond to a $t_{1/2} > 2$ s. Thus, even though the

response was highly sensitive to the second-messenger concentration, the release rate was 100-fold slower than that found here. A fast activation of IP₃-sensitive Ca²⁺ release in the SR of rabbit skeletal muscle was, therefore, largely unexpected. In support of our finding, however, a recent study in brain synaptosomes (Finch et al., 1991) showed that the rate of release produced by 1 μ M IP₃ peaked at ~140 ms, consistent with the delay in the activation of release that we observed at low IP₃ concentrations (Fig. 2). Taken together, these results would seem to suggest that the kinetics of IP₃ receptor activation may vary from cell to cell, depending on the need for slow or fast Ca²⁺ signaling.

Implications for excitation—contraction coupling

The kinetics of activation and inactivation of ryanodine and IP3 receptors under various ionic conditions prevailing in skeletal muscle (Maughan and Godt, 1989), and the interactions that may occur between the two channels when present in junctional SR, are presently unknown. However, a possible colocalization of Ca²⁺sensitive and IP₃-sensitive Ca²⁺ release channels in the same membrane may have several implications. A small component of the total release of Ca2+ from the SR of fast twitch muscle is essentially instantaneous and follows the time course of the depolarizing stimulus (Kovacs et al., 1979; Schneider and Simon, 1988; Simon et al., 1989). A much larger release, with kinetics of hundreds of milliseconds, has also been described in continuously depolarized fibers (Brum et al., 1988). This complexity in the time course of release makes it unlikely that a single channel type is entirely responsible for the observed Ca2+ release waveform. In chromaffin cells and neurons (Supattapone et al., 1988; Ellisman et al., 1990; Malgaroti et al., 1990; Opsichuck et al., 1990), IP₃ and ryanodine receptors coexist in the same cell. Hence, their coexistence in skeletal muscle would not be entirely surprising and may account for the complexity in the intracellular Ca2+ release waveform produced by depolarization. Berridge and Gallione (1988) suggested that an IP₃-mediated release of Ca²⁺ in a localized region of the cytoplasm may rapidly propagate through the entire cell by a self-sustaining wave of CICR. For this model to apply to skeletal muscle, the amount of IP₃ produced should be large enough to activate IP3sensitive channels in the vicinity of the terminal cisternae, which is the presumed site of Ca2+ release during excitation-contraction coupling (Vergara et al., 1986). The fast kinetics of activation of IP3 receptors would thus ensure a rapid accumulation of Ca2+ that could trigger the activation of ryanodine receptor channels (Fabiato, 1985; Imagawa et al., 1987; Inui et al., 1987; Beuckelmann and Wier, 1988; Lai et al., 1988; Niggli and Lederer, 1990). The location of ryanodine receptors exclusively in the terminal cisternae SR (Block et al., 1988; Wagenknecht et al., 1989), and their high density (Smith et al., 1986), would contribute to the generation of a wave of CICR that could quickly spread over the entire terminal. Alternatively, IP3 receptors could contribute to excitation-contraction coupling after the initial release of SR Ca²⁺ had occurred. For example, the morphological connection of ryanodine receptors to the transverse tubular membrane (Block et al., 1988; Wagenknecht et al., 1989), and the activation of phospholipase C by Ca²⁺ (Tiger et al., 1989; Baird and Nahorski, 1990), suggests a cascade in which charge movement would activate ryanodine receptors (Takeshima et al., 1989), and the local increase in cytosolic Ca2+ would in turn stimulate production of IP₃ (Tiger et al., 1989; Baird and Nahorski, 1990). The activation of IP₃-sensitive channels after Ca²⁺-dependent activation of phospholipase C may thus serve to sustain SR Ca2+ release beyond the duration the initial depolarizing stimulus. Regardless of the mechanism of activation in situ, we expect IP₃sensitive channels to have a major impact in the Ca²⁺ homeostasis of skeletal muscle since, as shown in Table 1, the amount of Ca²⁺ mobilized by the IP₃-sensitive pathway is more than half of that mobilized by ryanodine receptors.

Supported by National Institutes of Health GM-36852, American Heart Association, Muscular Dystrophy Association, and the Science and Engineering Research Council of England. C. Valdivia is recipient of a postdoctoral fellowship from the National Institutes of Health, R. Coronado is an Established Investigator of the American Heart Association, and B. V. L. Potter is a Lister Institute Fellow.

Received for publication 17 May 1991 and in final form 15 January 1992.

REFERENCES

- Baird, J. G., and S. R. Nahorski. 1990. Increased intracellular calcium stimulates ³H-inositol polyphosphate accumulation in rat cerebral cortical slices. J. Neurochem. 54:555-561.
- Berridge, M. J., and A. Gallione. 1988. Cytosolic calcium oscillators. FASEB (Fed. Am. Soc. Exp. Biol.) J. 2:3074–3082.
- Beukelmann, D. J., and W. G. Wier. 1988. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. *J. Physiol.* (Lond.). 405:233-255.
- Block, B. A., T. Imagawa, K. P. Campbell, and C. Franzini-Armstrong. 1988. Structural evidence for direct interaction between the molecular components of the transverse tubule sarcoplasmic reticulum junction in skeletal muscle. J. Cell. Biol. 107:2587–2600.
- Brum, G., E. Rios, and E. Stefani. 1988. Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibers. *J. Physiol.* (Lond.). 398:441–473.

- Calviello, G., and M. Chiesi. 1989. Rapid kinetic analysis of the calcium-release channels of the skeletal muscle sarcoplasmic reticulum: the effect of inhibitors. *Biochemistry*. 28:1301-1306.
- Cooke, A. M., R. Gigg, and B. V. L. Potter. 1987. Myo-inositol 1,4,5 triphosphorothioate: a novel analogue of a biological second messenger. J. Chem. Soc. Chem. Commun. 1525–1526.
- Donaldson, S. K., N. D. Goldberg, T. F. Walseth, and Huetteman. 1987. Inositol trisphosphate stimulates calcium release from peeled skeletal muscle fibers. *Biochim. Biophys. Acta*. 927:92-99.
- Dupont, Y. 1984. A rapid-filtration technique for membrane fragments or immobilized enzymes: measurements of substrate binding or ion fluxes with a few milliseconds time resolution. *Anal. Biochem.* 142:504–510.
- Ehrlich, B. E., and J. Watras. 1988. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. *Nature (Lond.)*. 336:583-586.
- Ellisman, M. H., T. J. Deerinck, Y. Ouyang, C. F. Beck, S. J. Tanksley, P. D. Walton, J. A. Airey, and J. L. Sutko. 1990. Identification and localization of ryanodine binding proteins in the avian central nervous system. *Neuron.* 5:135–146.
- Endo, M. 1985. Calcium release from sarcoplasmic reticulum. Curr. Top. Membr. Transp. 25:181-230.
- Fabiato, A. 1985. Rapid ionic modifications during the aequorindetected calcium transient in a skinned canine cardiac purkinje cell. J. Gen Physiol. 85:189-246.
- Fabiato, A. 1986. Inositol (1,4,5)-trisphosphate-induced release of Ca²⁺ from sarcoplasmic reticulum of skinned cardiac cells. *Biophys. J.* 49:190a. (Abstr.)
- Fabiato, A. 1988. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. *Methods Enzymol.* 175:378–471.
- Finch, E. A., T. J. Turner, and S. M. Goldin. 1991. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science (Wash. DC). 252:443-446.
- Hanon, J. D., N. K. Lee, and J. R. Blinks. 1988. Calcium release by inositol trisphosphate in amphibian and mammalian skeletal muscle is an artifact of cell disruption, and probably results from depolarization of sealed-off T-tubules. *Biophys. J.* 53:607a. (Abstr.)
- Hidalgo, C., M. A. Carrasco, K. Magendzo, and E. Jaimovich. 1986. Phosphorylation of phosphatidylinositol by transverse tubule vesicles and its possible role in excitation-contraction coupling. FEBS (Fed. Eur. Biochem. Soc.) Lett. 202:69-73.
- Ikemoto, N., B. Antoniu, and L. G. Meszaros. 1985. Rapid flow chemical quench studies of calcium release from isolated sarcoplasmic reticulum. J. Biol. Chem. 260:14096-14100.
- Imagawa, T., J. Smith, R. Coronado, and K. P. Campbell. 1987.
 Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the calcium permeable pore of the calcium release channel. J. Biol. Chem. 262:16636-16643.
- Inui, M., A. Saito, and S. Fliescher. 1987. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262:1740-1747.
- Kawano, S., and R. Coronado. 1991. Ca²⁺ dependence of Ca²⁺ release channel activity in the sarcoplasmic reticulum of cardiac and skeletal muscle. *Biophys. J.* 59:600a. (Abstr.)
- Kentish, J. C., R. J. Barsotti, T. J. Lea, I. P. Mulligan, J. R. Patel, and M. A. Ferenczi. 1990. Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium of Ins(1,4,5)P₃. Am J. Physiol. 258:H610-H615.

- Kovacs, L., E. Rios, and M. F. Schneider. 1979. Calcium transients and intramembrane charge movement in skeletal muscle fibers. *Nature* (*Lond.*). 279:391-396.
- Lagos, N., and J. Vergara. 1990. Phosphoinositides in frog skeletal muscle: a quantitative analysis. *Biochim. Biophys. Acta.* 1043:235– 244.
- Lai, F. A., H. P. Erickson, E. Rosseau, Q. Liu, and G. Meissner. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle. *Nature (Lond.)*. 331:315-319.
- Lea, T. J., P. J. Griffiths, R. T. Tegear, and C. C. Ashley. 1986. An examination of the ability of inositol 1,4,5 trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibres of frog and crustacea. FEBS (Fed. Eur. Biochem. Soc.) Lett. 207:153-161.
- Ma, J., M. Fill, C. M. Knudson, T. Imagawa, K. P. Campbell, and R. Coronado. 1988. Purified ryanodine receptor is a gap junction type channel. Science (Wash. DC). 242:99-102.
- Malgaroti, A., R. Fesce, and J. Meldolesi. 1990. Spontaneous [Ca²]_i fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine- and ryanodine-sensitive intracellular Ca²⁺ store. J. Biol. Chem. 265:3005–2008.
- Maughan, D. W., and R. E. Godt. 1989. Equilibrium distribution of ions in a muscle fiber. *Biophys. J.* 56:717-722.
- Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Calcium signals recorded from cut frog twitch fibers containing antipyrylazo III. J. Gen. Physiol. 89:83-143.
- Meissner, G. 1984. Adenine nucleotide stimulation of Ca²⁺-induced Ca²⁺ release in sarcoplasmic reticulum. *J. Biol. Chem.* 259:2365–2374.
- Meissner, G., G. E. Conner, and S. Fleischer. 1973. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca²⁺ pump and Ca²⁺ binding proteins. *Biochim. Biophys. Acta.* 298:246–269.
- Meissner, G., E. Darling, and J. Eveleth. 1986. Kinetics of rapid Ca²⁺ release by sarcoplasmic reticulum. Effects of Ca²⁺, Mg²⁺, and adenine nucleotides. *Biochemistry*. 25:236–244.
- Mendez, J., and A. Keys. 1960. Density and composition of mammalian muscle. *Metabolism*. 9:184--188.
- Meyer, T., D. Holowka, and L. Stryer. 1988. Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science (Wash. DC). 240:653-656.
- Mikos, G. J., and T. R. Snow. 1987. Failure of inositol 1,4,5 trisphosphate to elicit or potentiate Ca⁺⁺ release from isolated skeletal muscle sarcoplasmic reticulum. *Biochim. Biophys. Acta.* 927:256–260.
- Miyamoto, H., and E. Racker. 1982. Mechanism of calcium release from skeletal sarcoplasmic reticulum. *J. Membr. Biol.* 66:193–201.
- Mobley, B. A., and B. R. Eisenberg. 1975. Sizes of components in frog skeletal muscle measured by methods of stereology. J. Gen. Physiol. 66:31–45.
- Movsesian, M., A. P. Thomas, M. Selak, and J. R. Williamson. 1985. Inositol trisphosphate does not release Ca²⁺ from permeabilized cardiac myocytes and sarcoplasmic reticulum. *FEBS (Fed. Eur. Biochem. Soc.) Lett.* 185:328–331.
- Niggli, E., and W. J. Lederer. 1990. Voltage-independent calcium release in heart muscle. *Science (Wash. DC)*, 250:565-568.
- Nosek, T. M., M. F. Williams, S. T. Zeigler, and R. E. Godt. 1986. Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am. J. Physiol. 250:807-810.

- Opsichuk, Y. V., M. Wakui, D. I. Yule, D. V. Gallacher, and O. H. Petersen. 1990. Cytoplasmic calcium oscillations evoked by receptor stimulation, G-protein activation, internal application of inositol trisphosphate or Ca²⁺: simultaneous microfluorimetry and Ca²⁺ dependent Cl⁻ current recording in single pancreatic acinar cells. *EMBO (Eur. Mol. Biol. Organ.) J.* 9:697–704.
- Pampe, P. C., M. Konishi, S. M. Baylor, and J. A. P. Somlyo. 1988. Excitation-contraction coupling in skeletal muscle fibers injected with the InsP₃ blocker, heparin. FEBS (Fed. Eur. Biochem. Soc.) Lett. 235:57-62.
- Parker, I., and I. Ivorra. 1990. Localized all-or-none calcium liberation by inositol trisphosphate. *Science (Wash. DC)*. 250:977–979.
- Rios, E., and G. Brum. 1987. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. *Nature* (*Lond.*), 325:717-720.
- Rios, E., and G. Pizarro. 1991. Voltage sensor of excitationcontraction copling in skeletal muscle. *Physiol. Rev.* 71:849-908.
- Rojas, E., V. Nassar-Gentina, M. Luxoro, M. E. Pollard, and M. A. Carrasco. 1986. Inositol 1,4,5 trisphosphate-induced Ca²⁺ release from the sarcoplasmic reticulum and contraction in crustacean muscle. Can. J. Physiol. Pharmacol. 65:672-680.
- Sanchez, X., M. A. Carrasco, J. Vergara, and C. Hidalgo. 1991. Inositol 1,4,5-trisphosphate activity in membranes isolated from amphibian skeletal muscle FEBS (Fed. Eur. Biochem. Soc.) Lett. 279:58-60.
- Scherer, N. M., and J. E. Ferguson. 1985. Inositol 1,4,5 trisphosphate is not effective in releasing calcium from skeletal sarcoplasmic reticulum microsomes. *Biochem. Biophys. Res. Commun.* 128:1064-1070.
- Schneider, M. F., and W. K. Chandler. 1973. Voltage dependent charge movement in skeletal muscle: a possible step in excitationcontraction coupling. *Nature (Lond.)*, 242:244–246.
- Schneider, M. F., and B. J. Simon. 1988. Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle. *J. Physiol.* (Lond.). 406:747-745.
- Simon, B. J., M. G. Klein, and M. F. Schneider. 1989. Caffeine slows turn off of calcium release in voltage clamped skeletal muscle fibers. *Biophys. J.* 55:793-797.
- Smith, J. S., R. Coronado, and G. Meissner. 1985. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. *Nature (Lond.)*. 316:446-449.
- Smith, J. S., R. Coronado, and G. Meissner. 1986. Single channel measurements of Ca²⁺ release channels from skeletal muscle sarcoplasmic reticulum: activation by Ca²⁺, ATP, and modulation by Mg²⁺. J. Gen. Physiol. 88:573-588.
- Smith, J. S., T. Imagawa, J. Ma, M. Fill, K. Campbell, and R. Coronado. 1988. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J. Gen. Physiol. 92:1-26.
- Somlyo, A. P., J. W. Walker, Y. E. Goldman, D. R. Trentham, S. Kobayashi, T. Kitazawa, and A. V. Somlyo. 1988. Inositol trisphosphate, calcium and muscle contraction. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 329:399-414.
- Strupish, J., A. M. Cooke, B. V. L. Potter, R. Gigg, and S. R. Nahorski. 1988. Stereospecific mobilization of intracellular Ca²⁺ by inositol 1,4,5-trisphosphate. Comparison with inositol 1,4,5-trisphosphorothioate and inositol 1,3,4-trisphosphate. *Biochem. J.* 253:901–905.
- Suarez-Isla, B. A., V. Irribarra, A. Oberhauser, L. Larralde, C. Hidalgo, and E. Jaimovich. 1988. Inositol (1,4,5)-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum membranes. *Biophys. J.* 54:737-741.
- Sumbilla, C., and G. Inesi. 1987. Rapid filtration measurements of Ca²⁺ release from cisternal sarcoplasmic reticulum vesicles. 210:31–36.

- Supattapone, S., P. F. Worley, J. M. Baraban, and S. H. Snyder. 1988. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263:1530-1534.
- Tanabe, T., K. G. Beam, B. A. Adams, T. Niidome, and S. Numa. 1990.Regions of skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. *Nature (Lond.)*. 346:567–572.
- Takeshima, H., S. Nishimura, T. Matsumoto, H. Ishida, K. Kangawa, N. Minamino, H. Matsuo, M. Ueda, M. Hanaoka, T. Hirose, et al. 1988. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. *Nature (Lond.)*. 339:439–445.
- Taylor, C. W., M. J. Berridge, A. M. Cooke, and B. V. L. Potter. 1989. Inositol 1,4,5-trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium. *Biochemistry*. 259:645-650.
- Tiger, G. P., P. E. Bjorklund, R. F. Cowburn, and C. J. Fowler. 1989. Enhancement by potassium of carbachol-stimulated inositol phospholipid breakdown in rat cerebellar cortical miniprisms: comparison with other depolarizing agents. 52:1843–1853.
- Valdivia, C., H. H. Valdivia, B. V. L. Potter, and R. Coronado. 1990.
 Ca²⁺ release by inositol trisphosphorothioate in isolated triads of rabbit skeletal muscle. *Biophys. J.* 57:1233-1243.
- Valdivia, C., D. Vaughan, B. V. L. Potter, and R. Coronado. 1991. Fast release of calcium mediated by inositol 1,4,5-trisphosphorothioate receptor channels in the sarcoplasmic reticulum of skeletal muscle. *Biophys. J.* 59:556a. (Abstr.)

- Vergara, J., and M. Delay. 1986. A transmission delay and the effect of temperature at the triadic junction of skeletal muscle. *Proc. R. Soc. Lond. B Biol. Sci.* 229:97–110.
- Vergara, J., R. Y. Tsien, and D. Delay. 1985. Inositol 1,4,5 trisphosphate: a possible chemical link in excitation contraction coupling in muscle. *Proc. Natl. Acad. Sci. USA*. 82:6352-6356.
- Vergara, J., K. Asorta, and M. Delay. 1986. A chemical link in exitation-contraction coupling. In Cell Calcium and the Control of Membrane Transport. L. Madel and D. Eaton, editor. Society of General Physiologist Series, Vol. 42. 134–151.
- Volpe, P., G. Salviati, F. Di Virgilio, and T. Pozzan. 1985. Inositol 1,4,5 trisphosphate induced calcium release from the sarcoplasmic reticulum of skeletal muscle. *Nature (Lond.)*, 316:347–349.
- Wagenknecht, T., R. Grassucci, J. Frank, A. Saito, M. Inui, and S. Fleischer. 1989. Three-dimensional architecture of calcium channel/foot structure of sarcoplasmic reticulum. *Nature (Lond.)*. 338:167–170.
- Walker, J. W., A. V. Somlyo, Y. E. Goldman, A. P. Somlyo, and D. R. Trentham. 1987. Kinetics of smooth and skeletal muscle activation by laser pulse proteolysis of caged inositol 1,4,5 trisphosphate. *Nature (Lond.)*, 327:249-252.
- Willcocks, A. L., B. V. L. Potter, A. M. Cooke, and S. R. Nahorski. 1988. Myoinositol (1,4,5)trisphosphorothioate binds to specific [3H]inositol(1,4,5) trisphosphate sites in rat cerebellum and is resistant to 5-phosphatase. *Eur. J. Pharmacol.* 155:181–183.